Hogra: A Homebrew Graphics Engine

Zoltan Simon
Supervised by: Dr. Balazs Csébfalvi

Department of Control Engineering and Information Technology, Faculty of Electrical Engineering and Informatics,
Budapest University of Technology and Economics, Miegyetem rkp. 3., H-1111 Budapest, Hungary

As computer engineering students, we are
interested in the inner workings of rendering
systems. These applications have a fairly
convoluted architecture, challenging the
creator’'s skills and knowledge. Having our
implementation allows greater flexibility
when adapting the program for different use
cases. We could also utilize our system as
an educational tool. This motivated our
venture to develop our own realtime
rendering engine that besides being capable
of creating video games has already proved
to be useful as the platform for scientific
visualization projects.

Current state-of-the-art game engines
include Unity and Unreal Engine. Similar —
but simpler compared to previously
described ones — engines have been created
by individuals, small teams, and open source
communities in the past. Godot is a video
game engine celebrated by many small
developer teams. Hazel is another example
of a simplistic engine created by Yan
Chernikov and his team. Their intention with
the Hazel project is to educate game
developers via regularly published video
diaries and by making the source code
available on the internet. PBRT is an
educational engine built to demonstrate the
concepts described in the Physically Based
Rendering: From Theory To Implementation
book.

Our implementation combines existing
techniques. The engine is written in C++. We
use OpenGL for rendering. We provide a
simple collision and physics engine. When it
comes to visualization, we use Physically
Based Rendering (PBR). Our current
implementation uses deferred shading to
lower the cost of PBR shading. We are
working on upgrading to forward+ rendering.
We have integrated a post-processing
pipeline, which supports visual effects such
as bloom or different tone mapping
techniques. It is also trivial to create new
custom post-processing effects. Our
architecture supports instanced rendering
thus together with deferred shading enables
scenes with a large number of objects. Our
software has a layer system, which allows
combination of different rendering
techniques in the same scene. This means
that we can create scenes, where forward
and deferred shading are used together.
Layers can have different post-processing
effects applied to them. All of this can be
described in a single JSON file enhancing the
scene creation process. We support Unicode
text rendering with custom fonts but also
provide an interface towards ImGui as an
easy-to-use windowing library. We have also
integrated audio rendering using OpenAL
soft. Our future plans include porting to
Vulkan APl and introducing state-of-the-art
multithreading techniques. Owing to the
lucidity, modularity, and transparency of our
implementation, the presented render engine
currently serves as the foundation of multiple
research projects, and is also ready to be
applied in classrooms for teaching Computer
Graphics.

Our project has not arrived at a finish line yet
but has served as the platform of our choice
for various scientific visualization projects at
the university. One of these projects required
support for the visualization of volumetric
datasets. We utilized the layer system to
combine rendering of CT / MRI datasets
using half angle slicing and ray tracing
methods. A basic forward rendering layer
was used to display utility icons such as a
light bulb showing the direction of
illumination and the bounding box of the
volumetric dataset. We used a separate layer
to render the actual volume. The user could
toggle settings via ImGUI.An ongoing project
requires visualization of the so called
Chinese magic mirrors. Here we utilize the
scene loading from JSON configuration file
to make changing settings easy.

We have created a graphics engine, which is
capable of simulating and rendering complex
3D scenes. It has a highly customizable
render layer system. We have used this
framework to create scientific visualization
applications.

We are thankful for the guidence of
Dr. Balazs Csebfalvi.

This work was supported by
OTKA K-124124.

